Sometime in the next five or six weeks, the ice on the Tanana River in Nenana, Alaska, 55 miles southwest of Fairbanks, will break up. Every year since 1917, local residents have hosted a contest, called the Nenana Ice Classic: anyone who purchases a ticket can guess the exact date and time the ice will go out, and the closest guess wins the pot – in recent years, so many people have entered that multiple people have picked the right minute, and they’ve had to divide the prize money.
Last year’s winners split $363,627.
With that kind of cash on the line, it’s no surprise that the organizers of the Nenana Ice Classic have kept meticulous records. We know when, exactly, the ice on the Tanana broke up outside Nenana each year for almost the last hundred years – that’s the kind of archive that ecologists dream about, because it’s a long enough record to allow us to see changes over time.
Environmental cues that organisms use to time their migrations or developmental milestones are changing as the world’s climate changes: plants are blooming earlier than ever before, frozen rivers are thawing sooner and sooner, and in some places, salmon are returning to freshwater to spawn weeks earlier or later than they have in the past.
That can be a problem for organisms that rely on the salmon, and their eggs, for food – if those animals don’t know when the salmon will be arriving, they might miss their chance to chow down. Enough mismatches in timing, and some species might face a serious threat to their survival.
A group of scientists working in a coastal Alaskan stream recently investigated the migration timing of Dolly Varden, a type of fish that often lives in the same streams as salmon, and which sometimes depends on salmon for food. As the authors write, “[w]here salmon remain at historical levels of abundance, Dolly Varden can acquire the majority of their annual energy intake by gorging on salmon eggs.”
The researchers recently reported their results in the journal Freshwater Biology. They compared the timing of Dolly Varden migrations to salmon migrations over ten years, and they also analyzed environmental conditions, like water temperature and precipitation, to see if Dolly Varden were responding to environmental cues (in which case they might be at risk of missing the salmon migration), or to the movement of salmon themselves.
They found that Dolly Varden seem to synchronize the timing of their migration with that of salmon. Dolly Varden migrations “appear to be cued directly by salmon migration rather than environmental conditions,” suggesting that Dolly Varden are less vulnerable to a timing mismatch than they might be otherwise.
Still, not all animals will be as lucky as Dolly Varden. The authors point out that Dolly Varden can likely see or smell salmon as they return to freshwater to spawn, alerting them to their presence; other migrating animals can’t be assured that the resources they depend on will await them at the end of their journey, and must rely on environmental cues as a proxy. Those organisms are the ones most vulnerable to a timing mismatch, and the ones most likely to suffer negative consequences as environmental indicators – like the date the ice goes out on the Tanana River – continue to shift in time.